− 1 − 授業期間 2019年度 後期 授 業 対 象 指定なし 水5 科目名 数学の基礎(微分から積分へ) 科目責任者 古谷 倫貴 単 位 数 2単位 担当者 古谷 倫貴 授業の目的 高校における数学Ⅲの微分積分を理解することを目標とする.したがって,高校で数学Ⅲを学ばなかった学 … 「基礎からスッキリわかる微分積分」(初版)正誤表 誤 正 p.ii,1行目 なお,証明については,数学的な なお,証明については,数学的な p.iv,中程 協同的な活動を創り出しやりぬく力, 協働的な活動を創り出しやりぬく力, 基礎微積分B小テストNo.1解答例 [1]与えられた関数をf(x,y) とおく.(i), (ii) ではいずれも x = r cosθ,y = r sinθ とおいて,r → 0 のときに,θ によらない極限値があるかどうかを調べる.(i) x3 − 3xy x2 + y2 r3 cos3 θ − 3r2 cosθ sinθ r2 微積分学講義 下/Howard Anton(数学)の目次ページです。最新情報・本の購入(ダウンロード)はhontoで。あらすじ、レビュー(感想)、書評、発売日情報など充実。書店で使えるhontoポイントも貯まる。 1 積分練習問題解答 1. つぎの不定積分を計算せよ。(1) ∫ x 1 x2 +2x+5 dx d dx (x2 +2x+5) = 2(x+1)だから x 1 x2 +2x+5 x+1 x2 +2x+5 2 x2 +2x+5 と変形して,y = x2 +2x+5 とおくとdy = 2(x+1)dx だからx+1 x2 +2x+5 dx = dy 2y = logjyj+C =
初歩からの微積分演習問題解答 20080104修正:問題4-10 20080730修正:問題14-6, 14-7 演習問題1の解答 問題1-1. 関数f(x)=x2 −3xに
解答 誤 コメント f(1 2) = (1 2)2 −3×( 1 2) = 1 4 − 3 2 = − 5 4 問題1-2 関数y = x2 +1と関数v = u2 +1は同じ関数である. 解答 正 コメント これらはともに、数を2乗して1を加えるという関数であり、 用いる変数記号が F.1.2 定数変化法で解く. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 F.2 一般の2階線形常微分方程式の境界値問題のGreen 微分積分学I 演習問題8 5 fyy = 4(x2 +6y2 1)(x2 +2y2 +1)3停留点(0;0) において, ヘッセ行列式 xx f fxy fyx fyy 2 0 0 4 = 8 > 0 および, fxx < 0 なので, この点は(狭義の) 極大である. (10) まず偏微分を計算する: fx(x;y) = y2(1 2xy x2) (x+y)2 微積分I (2019年前期) 期末試験類題(理工学部共通) 1 問題 1.1 1 階導関数 1. 次の関数の1 階導関数を求めよ. (1)2x4 −x2 +3+ 1 x (2) x2 x (3)(x2 +1)5 (4)ax+b cx+d (5) x x2 +1 (6)x2e−x (7) 103x (8) log(x+p x2 +3) (9) e−x cos(3x) (10) sin2 x (11) sin−1(2x) (12) cos−1(3x) (13) tan−1 微積分学 これまでに講義した微積分学についての講義ノートの一部を 置きます。参考にしてください。また,質問等ありましたら, いつでもどうぞ。 集合と論理 (復習) (4/25/2004) 逆関数という考え方 (5/10/2004) 弧度法と三角関数の微分の公式 (5/27/2003) 2018/10/15
第2章 微分積分の基礎のキソ この章では,多様体の解析に必要な微分積分,とくに多変数関数の扱いについて,基礎のキソを 確認する.多様体の基礎を理解するのに必要な微積分は,意外なほど少ない.とくに積分は当面は必 要ないので,ここでは微分のみを解説する.ただひとつ,重要な
高等学校数学Ⅱ「微分・積分の考え」における 「微分すること」・「積分すること」の意味理解に関する研究 ―極限の考えの理解過程に着目して― 片寄 恵理奈 上越教育大学大学院修士課程 3 年 1. はじめに 微積分の学習において,計算はできるが, 6 微分積分学の基本定理 13 7 テイラーの定理再考 14 8 log(1+x), tan 1x の多項式による近似 16 9 広義積分 19 10 正項級数の収束判定法 20 11 指数関数 25 12 整級数について 30 13 曲線の長さ 33 1 関数の微分 開区間(a;b) で定義さf 微積分の基本となる実数の定義から始めます。なぜ実数の定義から始めるかというと、実数の連続性が微分において重要な役割を担うからです。前に実数は「体」であるという性質があることを述べました。 今回は実数の順序に関する性質を紹介 新版数学シリーズ 新版微分積分演習 「新版微分積分」に完全準拠の問題集です。 教科書のまとめを掲載しています。 A問題→B問題→発展問題→章のまとめの問題と、段階式に配列しています。 A問題には教科書の該当練習を記載しています。
「微分積分学I」試験問題 1 lim n→∞ √ n +1 n − 2 = 0 となることを, ε-N 論法を用いて証明せよ. 2 関数f(x) = 2 x2 が(0,∞) で連続であることを, ε-δ 論法を用いて証明せよ. 3 lim n→∞ an = ∞ とするとき,lim n→∞ 1 an = 0 となることをε-N .
微分積分学演習I 大学院情報科学研究科 尾畑伸明 2002–2004年度に開講した工学部1年生向「解析学A」(主に一変数微積分)で出題した問 題(レポート問題・小テスト・期末試験など)に解説を加えたものである. 便宜上, 章にわけ 微積分学II 演習問題 第27 回 重積分の広義積分 365 微積分学II 演習問題 第28 回 体積と曲面積 384 微積分学I 演習問題 第1回 数列の極限 1. 次の極限を求めよ. ただし, |a| <|b|, b = −1, c = 0, kは0 でない整数, mは整数とする. (1) lim n→∞ 1 A-1 簡単な微積分の公式 老婆心ながら,プリントに登場する初歩的な微積分の公式をまとめておく。1.1 微分公式 まず,簡単な関数の微分公式をまとめる。微分はダッシュ記号で表すものとする。つまりdf(x)/dx= f′(x) = f′ である。 (A-1.1) f(x) = c (定数), f′(x) = 0 まえがき 本書は,数学を道具として利用する理工系学生向けの微分積分学の入門書『計算力 をつける微分積分』の問題集である.同書は幸いにもご好評をいただき,版を重ねて きたが,計算力の養成のためにさらなる問題演習が必要という声が多く,適切な分量 数学・微積分 さくらの個別指導 さくら教育研究所は、従来の指導方法とは一味違う 「なぜそうなるかのプロセス」を重視した新しいス タイルで、応用問題の解決に絶対不可欠な基本プロ セス(発想・思考回路)を徹底的にトレーニングし 2018/03/01 この微積分法の発明が、万有引力の法則の発見へとつながりました。 今日では、ロケットの軌道計算や経済の分析など、幅広い分野に応用されている微積分法。微積分法が万有引力の法則を産み出す過程を、正岡弘照先生に語って
微積分I (2019年前期) 期末試験類題(理工学部共通) 1 問題 1.1 1 階導関数 1. 次の関数の1 階導関数を求めよ. 1 2x4 x2 3 1 x 2 x2 º x 3 x2 1 5 4 ax b cx d 5 x x2 1 6 x2e x (7) 103x (8) log x º x2 3 (9) e x cos 3x (10) sin2 x (11) sin 1 2x 12 cos 1 3x 13 tan 1 2.2 微積分記号d と ―微積分学の基本定理の起源 65 2.2 微積分記号dと ―微積分学の基本定理の起源 ライプニッツ(1646~1716)は17 才のときイェーナ大学で高度な数学に触 れ,そしてそこで受けた講義に強い影響を受けて,生涯に 積分 偶関数・奇関数の定積分 微積分学の基本定理による多項式関数の決定 B 10’ 積分 微積分学の基本定理 定積分を含む関数等式を満たす $1$ 次関数 B 20’ 積分 定積分 定積分を含む連立関数等式を満たす $1$ 次関数 B 10’ 積分 2014/07/09 監修: 岡本和夫 定価:1,760円(本体:1,600円) A5判 216頁 ISBN:978-4-407-32170-8 2012年11月10日発行 新版数学シリーズ 新版微分積分II おもに高専を対象にした数学のテキスト。 「新版微分積分I」と併せると微分積分学の全体がつかめます。 イントロダクション 微分・積分とは何か? 科学にいくつもの“革命”をおこしたアイザック・ニュートンの生涯 1 微積分の誕生前夜 砲弾の軌道 コラム 既成概念を疑い,観測事実を信じた「近代科学の父」ガリレオ 座標の発明 コラム 条件によって変化する変数「x」,一つの値に決まっている
初歩からの微積分演習問題解答 20080104修正:問題4-10 20080730修正:問題14-6, 14-7 演習問題1の解答 問題1-1. 関数f(x)=x2 −3xに
A-1 簡単な微積分の公式 老婆心ながら,プリントに登場する初歩的な微積分の公式をまとめておく。 A-1.1 微分公式 まず,簡単な関数の微分公式をまとめる。微分はダッシュ記号で表すものとする。つまり df(x)/dx = f'(x) = f'である。